
Application of laws governing the motion of bodies to fluid motion  

Example 1 

A gas flows into a rigid container initially evacuated. Assume that the inflow velocity is 

uniform at 2mls, as shown below. The tube inlet diameter is 10cm with the volume of the tank 

equal to 2000 litres. The pressure and temperature in the inlet line are maintained constant at 

400kpa and 330K respectively. The gas can be assumed to obey the perfect gas law P = ���, 

with R for the gas equal to 0.30KJ/kg.K. Assume the tank to be non-insulated so that the 

temperature of the gas in the tank remains constant at a room temperature of 300K. Determine 

the time required for the pressure in the tank to reach 300kPa.  

 

Solution  

Flow into the chosen control volume occurs only at the inlet pipe.  

From  
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 Vn equal 2mls (Efflux is positive) and  
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Therefore, the second term of the side becomes (4.04) 2dA since density and velocity are 

constant across the inlet area, they can be taken outside the integral, yielding.  
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Since pressure is only a function of time, we can write the total derivation  
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Ex 2. 

A circular Swimming Pool is 5m in diameter. It is to be filled to a uniform depth of 2m by means 

of a 1.2cm diameter hose, as shown below. The velocity of the water in the hose is 3mls. 

Determine the time required to fill the pool in hours.  



                                 

Solution  

Select the control volume to include the entire volume to be filled, as indicate in the diagram  
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Integrating, we have  
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VELOCITY POTENTIAL FUNCTION AND STREAM FUNCTION  

Velocity Potential function: It is defined as a scalar function of space and time such that its 

negative derivative with respect to any direction gives the fluid velocity in that direction. It is 

defined by  phi  . Mathematically, the velocity potential is defined as  zyxf ,,  for 

steady flow such that:  
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u, v, w are the components of velocity in x, y, z directions respectively.  

The velocity components in cylindrical polar co-ordinates in terms fo velocity potential function 

are given by:  
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Ur = Velocity component in radial (r) direction  

U= Velocity component in tangential direction ( direction)  

The continuity equation for an incompressible steady flow is  
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Substituting the values of  u, v and w from equation above , we get  
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For two-dimension case the equation reduce to  
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Properties of the potential function  

The rotational components* are given by  

 

























































z

v

y

w
w

x

w

z

u
w

y

u

x

v
w

x

y

z

2

1

2

1

2

1

 

Substituting the values, of u, v and w from  
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If   is a continuous function, then 
xyyx 






  22

 

then

0

;
22













xyx www

etc
zxxz



 

When rotational components are zero, the flow is called irrotational. Hence the properties of the 

potential function are: 

1. If velocity potential   exists, the flow should be irrotational 

2. If velocity potential    (satisfies the Laplace equation, it represents the possible steady 

incompressible irrotational flow. 

 

 

 



Stream Function 

It is defined as the scalar function of space and time, such that its partial derivative with respect 

to any direction gives the velocity component at right angles to that direction. It is denoted by    

(Psi) and defined only for two dimensional flow.  

Mathematically, for steady flow it is defined as =f(x,y) such that 
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The velocity component in cylindrical polar co-ordinates in terms of stream function are given as 
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Ur=radial velocity and U= tangential velocity 

The continuity equation for two-dimensional flow is  
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Substituting the value of u and v in  
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Hence existence 0 �means a possible case of fluid flow. The fluid may be rotational or 

irrotational 

The rotational component �z is given by  
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For irrotational flow, �z=0. Hence above equation becomes 0
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Which is Laplace equation for   

The properties of stream function  are:  

1. If stream function ( ) exists, it is a possible case of fluid flow which may be rotational 

or irrotational 

2. If stream function ( ) satisfies Laplace equation, it is a possible case of an irrotational 

flow  

Equipotential line: A line along which the velocity potential  is constant is called equipotential 

line.  

For equipotential line   = Constant  

   
0

 

But 

 

 vdyudx

vdyudx

dy
y

dx
x

flowsteadlyforyxf




















 ,

 

For equipotential line, 0d  
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Line of constant stream function  

   =constant 
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From equation 
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clear that the product of slope of equipotential line and the slope of stream line at the point of 

intersection is equal to-1. Thus the equipotential lines are orthogonal to the stream lines at all 

points of intersection.  

Relationship between stream Function and velocity potential function.  
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Example 1 

The velocity potential function is given by an expression 2
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The partial derivations of w.r.t to x and y are:  
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(1) The velocity components u and v are given  
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(iii) The given value of  , will represent a possible case of flow if it satisfies the Laplace 

equation i.e. 0
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:.Laplace equation is satisfied and hence  represent a possible case of flow. 

Example 2:  

The velocity potential function is given by  225 yx   Calculate the velocity components at 

the point (4,5)  
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The velocity components at the point (4,5) i.e., at x=4, y=5 

U = -10 x 4 = -40 unit  

V = 10 x 5 = 40 unit  

Problem 3 

A stream function  is given by yx 65  calculate the velocity components and also 

magnitude and direction of the resultant velocity at any point.  
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But the velocity components u and v in terms of stream function are given as  
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Resultant Velocity = 22 uu   
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